
Jones CTP Scanner
Reference Manual

Greg Baker (gregb@ifost.org.au)

Version 1.0.1

Contents

1 Overview 1

2 Installation 2
2.1 Requirements . 2

2.2 MS-Windows . 2

2.2.1 Perl . 2

2.2.2 jones application . 2

2.2.3 Historical data and sequence numbers 4

2.2.4 Changing the location 6

3 Commands and Config 8
3.1 jones.pl . 9

3.2 jns . 10

4 Programming Reference 19
4.1 Car Types . 20

4.2 Combinatorix . 22

4.3 CTPPostcodes.pm . 23

4.4 DateTags . 24

4.5 DriverTags . 25

4.6 ExportsConfig . 26

4.7 FetchScenario . 29

4.8 Hypercorners . 32

4.9 Hypercube . 33

4.10IsaCompat . 36

4.11JonesConfig . 37

4.12Motor Accidents Authority CTP Website Access Library . . 39

4.13NSWPostcodes . 41

4.14PremiumTable . 42

4.18RangeDB . 49

4.16ScenarioTags . 46

ii

CONTENTS CONTENTS

4.17StoragePaths . 47

4.18RangeDB . 49

4.19Validator . 52

4.20VehicleTags . 53

4.21YearComprehension . 54

5 Sample Configs 55
5.1 full.jns . 55

5.2 alerts.jns . 58

A Procedure for adding another field 61

B Working with Microsoft’s ISA proxy and firewall 62

Page iii of 64

CONTENTS CONTENTS

Page iv of 64

Chapter 1

Overview

jones is a fast, efficient and sophisticated premium scanner for under-
writers. It fetches premium pricing for NSW Compulsory Third Party
insurance from the NSW Motor Accidents Authority (MAA) price com-
parison website.

• It can collect every distinct premium for every class of vehicle
across all answers to all rating variables in under half an hour.
Sophisticated algorithms minimise unnecessary queries, and a
parallel architecture runs searches concurrently.

• Output options including HTML, CSV, plain text and many, many
other formats.

• Historical data can be kept without limit, and reports generated
periodically.

• Quick-response searches can be run several times a day to alert
you of any changes in your competitor’s pricing – via email, SMS
or RSS feed.

1

Chapter 2

Installation

2.1 Requirements

jones runs on any platform supported by Perl. This includes MS-
Windows, Linux, Solaris, HP-UX, OpenVMS and many other platforms.
jones can be configured to use as little as 30-40MB of memory and a
small percentage of a modern CPU, or it can be configured to run very
fast and keep a large multi-cpu system fully occupied.
It does not even require administrator-level access to install and run.
No GUI required, jones can run as a service or periodic scheduled job.
jones stores its historical data in many tiny flat files so it is best in-
stalled on a file system with a small block size, otherwise it will be
somewhat wasteful of disk space.

2.2 MS-Windows

2.2.1 Perl

You will need to install a version of the Perl5 interpreter. This is not
included in the jones .EXE and needs to be downloaded and installed
separately.
ActiveState’s Perl distribution has been well tested with jones, and can
be downloaded for free from https://www.activestate.com/activeperl/downloads.
Choose the latest version, and install it.

2.2.2 jones application

Double-click on the jones .EXE file to begin the installation. You will
see a dialogue box as shown in figure 2.1.
Click on “Next”. There is no choice screen offering an alternate direc-
tory to install to. jones expects to install into C:\jones, as shown in
the dialogue box in figure 2.2

2

https://www.activestate.com/activeperl/downloads

CHAPTER 2. INSTALLATION 2.2. MS-WINDOWS

Figure 2.1: Installation dialogue launch

Figure 2.2: jones cannot install into any other directory

Page 3 of 64

2.2. MS-WINDOWS CHAPTER 2. INSTALLATION

After the jones application files have been copied, the installer will
ask whether to configure proxy access and scheduled jobs as shown in
figure 2.3.
If you leave the “Configure proxy parameters in order to work with
Microsoft ISA proxy service” ticked, notepad will be launched, where
you should put your username, password, domain and proxy server
address.
If your organisation uses no proxy, or uses another proxy server from
any vendor other than Microsoft, untick this checkbox as jones will be
automatically detect and use the correct proxy server to use from your
environment without further configuration.

Figure 2.3: Dialogue for creating scheduled jobs, launching this docu-
ment and configuring proxy settings

Each scheduled job ticked in the installer will launch a command-
prompt session, which will ask for a password in order to register and
run, as shown in figure 2.4.

2.2.3 Historical data and sequence numbers

You may also have received a zip file jones-data.zip containing some
historical data.

• This is not needed if you are just using jones for fast alerting.

• If you don’t have any pre-existing data, then the first time you run
jones on each .jns file you will receive a warning. This can be
safely ignored, and it will work normally on the second run.

Extract it to C:, so that it populates C:\jones-data. This may take a
long time to run since it will usually have to reconstruct many tens of

Page 4 of 64

CHAPTER 2. INSTALLATION 2.2. MS-WINDOWS

Figure 2.4: schtasks password prompt

Figure 2.5: Navigate into the zip file, and click on “Extract all Files”

Figure 2.6: The Extract Wizard dialogue

Page 5 of 64

2.2. MS-WINDOWS CHAPTER 2. INSTALLATION

thousands of files. The screenshots in figures 2.5, 2.6 and 2.7 show the
steps, but unfortunately the MS-Windows shell extension for handling
zip files is buggy and often misses files in large archives. If in doubt, try
Info-ZIP’s unzip utility from ftp://ftp.info-zip.org/pub/infozip/win32/unz600xn.exe

2.2.4 Changing the location

If you plan to run jones from the C: drive, skip this subsection.

jones expects to run from C:\jones, have its permanent database in
C:\jones-data, and put its output into C:\jones-output. However,
these can be links to folders on other drives.

As long as jones is not currently running a job, simply move the rele-
vant folder onto another drive, and then create a junction from C: back
to where you put it. Use the Sysinternals Junction tool (download from
http://technet.microsoft.com/en-us/sysinternals/bb896768.aspx) to cre-
ate a junction. e.g. if you moved the data to the D: drive, run junction
C:\jones-data D:\jones-data
A more advanced, alternative solution is to modify the .jns files in
C:\jones to put the permanent database (and outputs) into other di-
rectories.

jones does not require file-level locking, and so these directories can
be on networked-drives as well. This has not been tested well, and may
perform badly due to the large number of network file reads and writes.

Page 6 of 64

ftp://ftp.info-zip.org/pub/infozip/win32/unz600xn.exe
http://technet.microsoft.com/en-us/sysinternals/bb896768.aspx

CHAPTER 2. INSTALLATION 2.2. MS-WINDOWS

Figure 2.7: Change the extraction location to be C:

Page 7 of 64

Chapter 3

Commands and Config

8

CHAPTER 3. COMMANDS AND CONFIG 3.1. JONES.PL

3.1 jones.pl

A program for keeping up with the changes made by CTP insurers

SYNOPSIS

jones.pl [--progress] [--threads maxthreads] [--no-fetch] [--no-alerts]
[--no-exports] config-file [config-file...]

OPTIONS

–progress

Show a progress line to show that something is happening.

–threads maxthreads

Specify the limit of the number of threads (Windows) or child pro-
cesses (Unix) to use to be maxthreads. This over-rides any config-
uration file parameter.

–no-fetch

Do not fetch from the MAA website, just use existing downloaded
data. This is the same as specifying enabled=no in each configu-
ration file.

–no-alerts

Do not report on changes which occured in this run compared to
the last run even though the configuration file says to do so, even
when there is a [changes] section.

–no-exports

Do not export data even when there is a section marked [export].

AUTHOR

(c) 2008,2009 The Institute for Open Systems Technologies Pty Ltd

Page 9 of 64

3.2. JNS CHAPTER 3. COMMANDS AND CONFIG

3.2 jns

Configuration file format for jones CTP website scanner

OVERVIEW

A configuration file for jones must have a [scan] section and a [storage]
section. It can optionally have a [fetch] section. In order to do
anything useful, it will need an output in either the [changes] or
[export] sections, which will probably be more useful if a [historical]
section is defined.
These configuration files typically have a filename ending in .jns.

[scenarios]

The scenarios section defines what scenarios to scrape from the MAA
website. Each line item can contain several values, separated by com-
mas. jones will use every possible combination of the scenarios listed.
Several parameters (marked with *) can take a range (two values sepa-
rated by a -) instead. When this is done, jones does smart searching,
looking at the two extremes of the ranges and working its way between
them skipping scrapes wherever possible.

Zone

Possible values are Country, Metro, Newcastle, Wollongong and
Outer

History

Possible values are Good Driver,Bad Driver, Good Driver and
NRMA Member and Bad Driver without Roadside Assistance.

Setting the last two of these makes no sense if Roadside is set as
well, and means that %r is undefined as well.

Ownership

Possible values are Privately Owned and Company Owned

Usage

Possible values are Private Usage and Business Usage

Existing

Possible values are CTP with Zurich, CTP with Allianz, No
CTP and Lapsed CTP.

Comprehensive

Possible values are Comprehensive with AAMI, Comprehensive
with Allianz, Comprehensive with CIC-Allianz, Comprehensive
with GIO, Comprehensive with NRMA, Comprehensive with QBE,
Comprehensive with Zurich, and No comprehensive.

Page 10 of 64

CHAPTER 3. COMMANDS AND CONFIG 3.2. JNS

Gender
Possible values are Male and Female.

Roadside
Possible values are No roadside assistance and NRMA Member.

Vehicle
There are many, many possibilities here. e.g. Toyota Prius,
Ford Falcon XR8 Pursuit. MCB class motorbikes (with engines
larger than 300cc) aren’t handled very well by jones.

VehicleAge *
This can be specified as by the year of manufacture or as the
number of years old.

DriverAge *
Valid values are between 16 and 100 inclusive.

Commencement *
Valid values are between 0 and 60 inclusive. This represents the
number of days in the future when the policy is to commence.

[fetch]

This section defines parameters jones about the way the fetch occurs

threads
How many processes (on Unix) or threads (on Windows) to run
concurrently. The default is 32, and can be over-ridden on the
command-line with the --threads option. The thread is very
coarse – each discrete scenario gets its own thread, up to the
threading limit defined here. This means that for a fetch which
has a lot of ranges and very few discrete variables the number of
threads used may be lower than specified here.

enabled
If set to a false value (e.g. ”0”, ”no”, ”disabled”, ”off” or ”false”), then
no fetch will be performed, and pre-existing data will be used. Can
be set on the command-line for all config files with --no-fetch.
Defaults to being enabled.

[changes]

After the MAA website fetch has been completed for all scenarios, jones
then checks to see if any premiums have shifted. The base-line is the
fetch which was run closest to the ”0” time from the [historical]
section. This defaults to the previous fetch.
The outputs can be any combination of generating a file, sending an
SMS or sending an email. If a file is being generated, then a command
can be run as well.

Page 11 of 64

3.2. JNS CHAPTER 3. COMMANDS AND CONFIG

Format

What to put on each line of the output for each change. Optional,
but without it no file is produced.

Header

What to put as the first line in the report of changes. Optional.

Nothing

What to output to the file if there were no changes. Optional – if
this is not set, then nothing is created or run when there are no
changes.

Outfile

File to append the output from a change report onto. If this is
missing, then output is printed out to STDOUT.

Time-based substitutions can appear in this path.

Command

Command to run after the Outfile has been generated. Optional.
Note that the command will not be run if no changes were identi-
fied and Nothing is not set.

Time-based substitutions can appear in this path.

SMSusername

The username to use when connecting to the ValueSMS website
in order to send an SMS alert. You receive this when you sign
up at their website (http://www.valuesms.com/). Optional, but
required if you want to send an SMS.

SMSpassword

The password to use when connecting to the ValueSMS website.
Optional, but required if you want to send an SMS.

SMSphones

The list of phone numbers to send the message to, separated by
commas. Optional, but required if you want to send an SMS.

SMShead

Similar to Header, but used for SMS messages. Optional, but
required if you want to send an SMS.

SMStexts

Similar to Format, but used for SMS messages. Duplicate output
texts are suppressed and there are no newlines between outputs
so SMStexts=%I; would produce a semicolon-separated list of in-
surers who have made premium changes. Optional, but required
if you want to send an SMS.

Page 12 of 64

CHAPTER 3. COMMANDS AND CONFIG 3.2. JNS

SMTPserver

The mail server’s address.

For sites running MS-Exchange or Lotus Notes, contact your mail
administrator and for this information since it may not be the
same as the address used in your desktop email tool Your mail
administrator may also need to enable SMTP mail reception from
the computer you are running jones on.

Optional, but required if you want an email to be sent.

FromAddress

What address you want the emails to appear to come from. Op-
tional, but required if you want an email to be sent.

ToAddress

A comma-separated list of addresses you want the emails to be
sent to. Optional, but required if you want an email to be sent.

EmailSubject

The subject line of the email. Time based subsitutions can be
used here. Optional, but required if you want an email to be sent.

EmailLines

Sames as Format, but for the body of the email message. Optional,
but required if you want an email to be sent.

[export]

Outfile

The filename to write to. Time-based substitutions can appear in
this path. Defaults to STDOUT.

Header

What to put on the first line of output data. Optional.

Format

What to put on each line of output data. If not present, no export
is done.

Footer

What to put on the last line of output data. Optional.

Order

The sorting order. This is a list of columns, the first column is
sorted first.

Command

A command to run after the export is completed.

Page 13 of 64

3.2. JNS CHAPTER 3. COMMANDS AND CONFIG

The Header, Format and Footer fields can also have a number after
them. e.g. Header4 or Format7. This allows for (for example) historical
exports in chunks. jones.pl will perform a complete export using the
number-less Header, Format and Footer fields, and then work its way
up through any other numbers present performing a complete export
each time according to the Header#, Format# and Footer# parameters
for that number.

[storage]

This section defines where to store the fetched data, and in what for-
mat.

Path

This specifies where to store the data which is collected. It can be
a full path or relative path name, and will almost certainly have
subsitution codes in it.

A typical unix example is:

/var/db/jones/city-worst/%I/%o-%u-%e-%t.txt

A typical Windows example is

C:\Program Files\Jones\Database\City Worst\%I\%o-%u-%e-%t.txt

See the SUBSTITUTION VARIABLES section for details on % sign
substitutions.

In order to save data correctly, all parameters given in the [scenarios]
section of the configuration file must be part of the path name,
unless they don’t take multiple values or are ranges. The insurer
name should be part of the path too (%I)

Log

This tells jones where it can store a log timestamp to record the
date and time of the last run. This does not get substituted with
substitution variables.

[historical]

The [historical] section is only relevant if Log is set in the [storage]
section, and affects Format and Header in the [export] and [changes]
sections.

You can specify ten different moments in the past which you would like
to compare against. Typically these would be times like: the previous
invocation of the program; this time last week; this time last month;
three months ago.

Page 14 of 64

CHAPTER 3. COMMANDS AND CONFIG 3.2. JNS

Of course, jones might not have run exactly one month ago (perhaps
it was a weekend, or there was a problem with the MAA website that
day). So jones will look through the Log file and find the fetch which
occured as close as possible to the requested time.
Note that time moment 0 has a special meaning – this is the baseline
against which changes are reported. A common value for this (which is
the default) is ’previous’.
The syntax for specifying times is quite flexible, as can be seen in the
following examples.

1. =previous

2. =1 month ago

3. =6 months ago

4. =1 year

5. =23rd June 2009

6. =-1 year + 3 days

7. =yesterday

8. =1 business day ago

Note that ”1 month” is not the same as ”1 month ago”, and that busi-
ness day calculations are a little flakey.

SUBSTITUTION VARIABLES

Scenario-based substitution variables

Some variables can be used as ranges, as discussed in the [scenarios]
section, and are marked with *. These variables cannot be used as part
of the Path (from the [storage] section of the configuration file) when
they are used as ranges.

%z

Zone

%h

History

%o

Ownership

%u

Usage

%e

Existing

Page 15 of 64

3.2. JNS CHAPTER 3. COMMANDS AND CONFIG

%c

Comprehensive

%g

Gender

%r

Roadside

%v *

The whole vehicle name including the string ”%a years old”.

%k

The vehicle name without reference to its age

%m *

The year of manufacture of the vehicle

%a *

The number of years old the vehicle is.

%d *

The driver’s age.

%n *

The number of days in the future the policy will commence.

%i

A unique identifier number for this scenario. At the moment, this
can only be used in [export] and [changes] sections.

%j

A command line to run which will print out the MAA website data.

Time-based and insurer-based substitution variables

Time-based variables can be used everywhere. They are based on the
time that jones was launched not the time when a particular fetch has
completed.

The insurer name can be used in filenames and line formats (but not
headers).

There are historical variations available for all time-based variables.

%I

The insurer name

%Y

The two-digit year when the program was started

Page 16 of 64

CHAPTER 3. COMMANDS AND CONFIG 3.2. JNS

%X

The century when the program was started

%D

The day of the month when the program was started

%M

The number of the month when the program was started

%B

The abbreviated month name in English of the month when the
program was started

%H

The hour when the program was started

%T

The number of minutes past the hour when the program was
started

%R

The day of the month of the policy commencement.

%U

The month name when the policy is to commence.

%V

The century when the policy is to commence.

%W

The year when the policy is to commence.

Premium value variables

The simple premium value variables are only valid for Format lines in
the [output] or [changes] section (not Header or Nothing lines).
All premium variables have historical variants.

%A

AAMI premium

%L

Allianz premium

%C

CIC-Allianz premium

%G

GIO premium

Page 17 of 64

3.2. JNS CHAPTER 3. COMMANDS AND CONFIG

%N

NRMA premium

%Q

QBE premium

%Z

Zurich premium

%P

Current premium

Historical Variants

Time-based and premium-based variables can have a number inserted
into them to refer to the time or premium which was found on a differ-
ent invocation of the program.

For example, if there is a line 0=previous in the [historical] sec-
tion, then %0P means ”the premium which was seen the last time the
program was run”.

As another example, if there is a line 5=1 year ago in the [historical]
section, then %5Q means ”the QBE premium from this time last year”.

SEE ALSO

jones.pl(1)

AUTHOR

(c) 2008,2009 The Institute for Open Systems Technologies Pty Ltd

Page 18 of 64

Chapter 4

Programming Reference

19

4.1. CAR TYPES CHAPTER 4. PROGRAMMING REFERENCE

4.1 Car Types

This package gives exhaustive lists of makes and models.

I copied-and-pasted %vehicle database from the MAA website source. I
guess a better (later) version of this program would read them from the
MAA website too.

Really cool would be to pull apart VIN numbers as well. Maybe &guess()
should recognise VIN codes and then translate.

(And handle the case when the RTA has put the wrong VIN code down
for a car.)

vehicle makes in vehicle class

Given a vehicle class (1, 3c, 10a, 10b), return the three letter codes for
all the makers of cars in that class. Defaults to class 1.

vendor name of vendor code

get vendor code from vendor name

Optionally takes a vehicle class in order to differentiate HOG from HOL.

car models from vendor code

Returns a hash reference. They keys are model names. The values are
the model codes.

sanity check class model make

Expects a vehicle class, a make (three letter vendor code) and possibly
a model.

guess

Takes a string as an argument. It tries to figure out what it is, and
returns a list of:

vehicle year,

vehicle class

vehicle make (full name)

vehicle make (short code)

vehicle model (name)

vehicle model (short code)

Page 20 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.1. CAR TYPES

If given a second argument, that is taken to be a vehicle class (i.e. 1, 3,
10a or 10b.)

At the moment it doesn’t handle motorcycles very well.

vehicle classes

Return a list (1,3,10a,10b) – the different classes of vehicle according
to the MAA.

Page 21 of 64

4.2. COMBINATORIX CHAPTER 4. PROGRAMMING REFERENCE

4.2 Combinatorix

This package implements some basic give-me-all-varations-on-this-theme
functions.

pair variations

pair variations($a1,$b1,$a2,$b2,$a3,$b3...) returns a list of
list references. The list will look like this:

$a1,$a2,$a3

$a1,$a2,$b3

$a1,$b2,$a3

$a1,$b2,$b3

$b1,$a2,$a3

$b1,$a2,$b3

$b1,$b2,$a3

$b1,$b2,$b3

variations of lists

variations of lists($listref1,$listref2,$listref3...) returns
a list of list references. Each of these referenced lists will have one ele-
ment from listref1, one from listref2, one from listref3 and so on.

variations

variations($hashref takes a hash reference as an argument. The
values of $hashref should be list references. variations($hashref)
returns a list of hash references. Each of these referenced hashes will
have the same keys as the original $hashref, but the values will be
scalars, in all possible combinations.
For example

%hash = (’dwarf’ => [’Sleepy’, ’Grumpy’, ’Happy’],
’princess’ => [’Snow White’, ’Cinderella’])

@answer = variations(\%hash);

has the same effect as

@answer = ({’dwarf’ => ’Sleepy’, ’princess’ => ’Snow White’ },
{’dwarf’ => ’Grumpy’, ’princess’ => ’Snow White’ },
{’dwarf’ => ’Happy’, ’princess’ => ’Snow White’ },
{’dwarf’ => ’Sleepy’, ’princess’ => ’Cinderella’ },
{’dwarf’ => ’Happy’, ’princess’ => ’Cinderella’ },
{’dwarf’ => ’Grumpy’, ’princess’ => ’Cinderella’ });

Page 22 of 64

CHAPTER 4. PROGRAMMING REFERENCE4.3. CTPPOSTCODES.PM

4.3 CTPPostcodes.pm

This module defines @zones and get zone, based around http://www.maa.nsw.gov.au/default.aspx?MenuID=140

Page 23 of 64

4.4. DATETAGS CHAPTER 4. PROGRAMMING REFERENCE

4.4 DateTags

Sometimes commencement date is a range, sometimes it is a discrete
variable. This module wraps the difference up and hides it away.

commencement field

commencement field($cfg) returns the Commencement field from the
Config::IniFiles object $cfg.

commencement list

commencement list($cfgline) returns the list of all ages specified in
$cfgline, which might be quite a lot if $cfgline is a range.

commencement earliest and latest

commencement earliest and latest($line) return the minmum and
maximum ages defined by the config line $line.

tags list

tags list($cfg[,$expand ranges]) returns a list reference which
should be inserted into combinatorix input representing the discrete
alternatives for the driver age.

This might be a long list (if Commencement is discrete) or a 1-element
list ”CommencementIn%nDays”

insert range fields

insert range fields($cfg,$range fields) takes the Commencement
field from $cfg and puts the minimum and maximum values into the
hash reference $range fields (and sets the subst field too).

If Commencement is discrete (and not a range), then this function will
do nothing.

fudge commencement

fudge commencement($hashref) will look to see if it can figure out
what the driver age is from a hash of scenario parameters, and push it
back into the hash reference.

Page 24 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.5. DRIVERTAGS

4.5 DriverTags

Sometimes driver age is a range, sometimes it is a discrete variable.
This module wraps the difference up and hides it away.

age field

age field($cfg) returns the DriverAge or ”Driver Age” field from the
Config::IniFiles object $cfg.

age list

age list($cfgline) returns the list of all ages specified in $cfgline,
which might be quite a lot if $cfgline is a range.

age min max

age min max($line) return the minmum and maximum ages defined
by the config line $line.

tags list

tags list($cfg[,$expand ranges]) returns a list reference which
should be inserted into combinatorix input representing the discrete
alternatives for the driver age.

This might be a long list (if DriverAge is discrete or $expand ranges is
something true) or a 1-element list ”DriverAge%d”

insert range fields

insert range fields($cfg,$range fields) takes the DriverAge field
from $cfg and puts the minimum and maximum values into the hash
reference $range fields (and sets the subst field too).

If DriverAge is discrete (and not a range), then this function will do
nothing.

fudge driver age

fudge driver age($hashref) will look to see if it can figure out what
the driver age is from a hash of scenario parameters, and push it back
into the hash reference.

Page 25 of 64

4.6. EXPORTSCONFIG CHAPTER 4. PROGRAMMING REFERENCE

4.6 ExportsConfig

The parameters in the [exports] section of a jones configuration file are:

Header

Footer

Format

Order

Outfile

Command

The first three of these can also have a number after them, e.g. Header4.
Numbered parameters are processed after unnumbered ones and in in-
creasing order.

i.e. A rather pointless [exports] section could look like this:

[exports]
Header=Hello
Format=World
Header1=Goodbye
Format3=Planet
Header4=I’m back
Footer=Farewell

If there are only two scenarios defined, the output from this would be:

Hello
World
World
Goodbye
Planet
Planet
I’m back
Farewall

The Order parameter sorts the output. Outfile can be a filename (date
and time-based substitutions are available) or ”-” to mean STDOUT.

new

new($class,$cfg) takes a Config::IniFiles object and reads the sec-
tion marked [exports]

Page 26 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.6. EXPORTSCONFIG

about

about($xpt,$topic) returns a hash based on the ExportsConfig ob-
ject’s Config::IniFiles object. If the config file has:

[export]
Header=This is a header
Header3=This is a third header
Header7=This is a seventh header
Footer=This is the end

Then about($xpt,"Header") will return

{ Header => ’This is a header’,
Header3 => ’This is a third header’,
Header7 => ’This is a seventh header’

}

It still attempts to return valid data even if $xpt is disabled.

sequences

sequences($xpt) returns a list, each element can be used as an argu-
ment to get. In the example above (from about(...)) it would return
the list ("",3,7).

get

get($xpt,$what,$sequence number) gets the relevant parameter from
the [export] section of the Config::IniFiles object.

$what can be one of ”Format”, ”Header” or ”Footer”.

The sequence number is either an empty string or a number.

includes historical

includes historical($xpt) returns true is there is any historical
data defined to be exported.

disable

disable($xpt) turns off exports, and makes sure almost all functions
return ”nothing” values.

enabled

enabled($xpt) returns true if $xpt-disable(...)> or its equivalent has
not been called.

Page 27 of 64

4.6. EXPORTSCONFIG CHAPTER 4. PROGRAMMING REFERENCE

check timelog($xpt,$storage paths) will confirm that there is a
’Log’ parameter defined in the [storage] section of the config file, and
will disable exports if the Log points to a non-existent file.

outfile template

outfile template($xpt) returns the ’Outfile’ parameter from the [ex-
port] section, or ”-” if none was defined.

ordering

ordering($xpt) returns the ’Order’ parameter from [export] and re-
turns a list reference.

command

command($xpt) returns the ’Command’ parameter from [export] or un-
def otherwise.

Page 28 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.7. FETCHSCENARIO

4.7 FetchScenario

This package calls MAACTP with appropriate tags for the kind of fetch
operation required.

fetch

fetch($variations ref,$range fields,$max threads,$storage paths,$show progress)
gets passed:

reference to a list of list references

Typically this would be generated by a call to Combinatorix::variations

reference to a hash of ranges

Ranges have a keys which are an axis names, and values which
are themselves hash references. These hash references have keys
’low’, ’high’, ’subst’ and (optionally) ’year-minus-subst’.

the maximum number of threads (or unix processes) to spawn

the template of where to save the data

whether or not to show progress statements

spawn

spawn($max threads,$variation,$scenario count,$child procs)
checks to see if $max threads is greater than 1, because if it isn’t,
there’s no spawning to do – all processing happens in the parent.

$variation and $scenario count are stored into the $child procs
hash reference for debugging purposes later.

If returns 0 if this process is supposed to do some work, or a PID if we
are a lazy parent.

end spawn

end spawn($max threads) is the counterpart to spawn(...). If there
was any spawning done, then assume that we are a worker thread and
exit.

reap afterwards

reap afterwards($child procs,$show progress) repeately does wait()
calls, removing the dead PID from the $child procs hash. If $show progress
is something true, it prints out an informative message show what it is
up to.

Page 29 of 64

4.7. FETCHSCENARIO CHAPTER 4. PROGRAMMING REFERENCE

fetch ranges

fetch ranges() IS NOT DOCUMENTED PROPERLY YET!

simple fetch

If a scenario doesn’t have any ranges, then it’s really easy.

simple fetch($scenario,$storage paths) fetches from MAACTP web-
site the scenario defined by the hash ref $scenario and saves it into
the file specified by $storage paths.

read all insurer history

read all insurer history($cache,$scenario,$storage paths,@time history)
inserts into $scenario all the insurer premiums for the scenario de-
fined in $scenario for the present time plus all the times listed in
@time history as stored in the databases of $storage paths

It also calls the various fudge * functions to fill out $scenario, which
has the side effect of calling MAACTP::reset().

read premium from file

read premium from file($cache,$scenario,$storage paths,$insurer,[$time])
reads a single file, as written by simple fetch(...) or fetch ranges(...)
and returns the premium.

The optional argument $time can be a hash reference to a different
timeset, in the format requried by JonesConfig::substitute()

alert changes

alert changes($scenarios listref,$timestamp history,$storage paths,$headline,$eachline,$no change string)
compares the current and previous fetch runs for the scenarios of
$scenarios listref and returns a list describing the differences.

It uses the listref $timestamp history) to figure out what moment in
time is ”previous”, and $storage paths to get the data for this run and
the last one.

If there are no differences, then the returned list will have $no change string
as its only element, or an empty list if $no change string is undef.

If there are differences, then the returned list will be based on the
strings $headline and $eachline. The first element of the list will
be $headline (with any % substitutions performed). The remaining
elements will be based around $eachline. There will be a list element
for each difference discovered between the current and previous fetch
runs.

Page 30 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.7. FETCHSCENARIO

export scenarios

export scenarios($scenarios listref,$time history,$storage paths,$line format)
steps through every scenario in $scenariso listref and reads the
data stored in the appropriate translation of $storage paths (for all
the times of $time history), and prints it out in the format specified
by $line format.

Page 31 of 64

4.8. HYPERCORNERS CHAPTER 4. PROGRAMMING REFERENCE

4.8 Hypercorners

This package creates strings which can be used as unique identifiers
for the corners of an N-dimensional hypercube.

corners

corners(N) returns a list of 2**N identifiers. The list is cached, so it’s
reasonably efficient to call it many times.

first corner

first corner(N) creates a string which will be used as a key for a
corner. It consists of N comma-separated zeroes. It can be fed into the
next corner() function later.

You probably don’t need to call this. Call corners(N) instead.

next corner

Returns a string of the same length as its argument, or undef if the
strings was a sequence of comma-separated ones.

You probably don’t need to call this. Call corners(N) instead.

set axis N

set axis N($corner index,$axis number,$value sets the $axis number’th
element in the corner index to $value (which must be 0 or 1). axes start
at axis number 0.

get axis N

get axis N($corner index,$axis number returns the Nth element of
the corner index vector.

matching

matching($pattern) returns the list of corners which match $pat-
tern. $pattern is a string consisting of comma-separated 1,0 or *.

Page 32 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.9. HYPERCUBE

4.9 Hypercube

This package implements a class which models a hypercube where
each vertex may have an associated value.
It can report which vertexes are missing values and whether all values
are the same along a given axis.

new

new Hypercube(N) constructs an unvalued N-dimensional hypercube.

usual value

usual value($hypercube) only works on incomplete or constant hy-
percubes. If the last argument to set() has always been the same, it
returns that, otherwise it returns undef.

complete

complete() returns 1 if all corners have values, and 0 otherwise.

set

set($hypercube,$corner idx,$new value) sets the value on a cor-
ner.

set list

set list($hypercube,$value,$corner idx1,$corner idx2,...) re-
peatedly calls $hypercube-set($corner idxX,$value) for each corner in-
dex.

get

get($hypercube,$corner index) returns the value (if any) associ-
ated with the corner $corner index.

keeps constancy

keeps constancy($hypercube,$value) returns 1 if we could call set($hypercube, ,$value)
and constant($hypercube) would still return a defined value. 0 oth-
erwise.

constant

constant($hypercube) returns the value if all corners are defined
and have the same value, undef otherwise.

Page 33 of 64

4.9. HYPERCUBE CHAPTER 4. PROGRAMMING REFERENCE

constant sanity check

constant sanity check($hypercube) returns the value if all corners
are defined and have the same value, undef otherwise.

missing

missing($hypercube) returns the first corner which doesn’t have an
associated value defined yet.

inconstant along axis

inconstant along axis($hypercube,$N) returns 1 if we are sure there
it is impossible for axis N to be constant. If we are not sure (e.g. be-
cause one or other end of something in axis N is undef still) we return
0.

first inconstant axis

first inconstant axis($hypercube) returns the lowest axis number
which returns 1 from inconstant along axis($hypercube,$x). Re-
turns undef if there aren’t any.

mitosis

mitosis($hypercube,$axis,[$flatten first,$flatten second]) re-
turns two hypercubes formed from the original, as if the original were
cut along $axis.

If the optional arguments $flatten first or $flatten second is non-
zero, then the respective hypercube is created as if $axis was com-
pressed.

For example, $hypercube is 2-dimensional and has values

(0,0) = 5 (0,1) = 4
(1,0) = 6 (1,1) = 7

Then $hypercube-mitosis(0)> will create two hypercubes. The first
one will be

(0,0) = 5 (0,1) = 4
(1,0) = undef (1,1) = undef

and the second one will be

(0,0) = undef (0,1) = undef
(1,0) = 6 (1,1) = 7

Page 34 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.9. HYPERCUBE

$hypercube-mitosis(0,0,1)> on the ther hand would create two hyper-
cubes like this:

(0,0) = 5 (0,1) = 4
(1,0) = undef (1,1) = undef

and

(0,0) = 6 (0,1) = 7
(1,0) = 6 (1,1) = 7

dump

dump($hypercube) returns a string which shows the hypercubes ver-
tex values.

Page 35 of 64

4.10. ISACOMPAT CHAPTER 4. PROGRAMMING REFERENCE

4.10 IsaCompat

Microsoft in their unusual wisdom decided to create a proxy service for
accessing the internet which only works properly if you use a special
Microsoft-developed authentication protocol.

No Perl library for this yet exists properly, so we have to launch a spe-
cial local daemon to act as a proxy, which then connects to the Mi-
crosoft proxy, supplying appropriate credentials.

using isa

Returns true if ISA proxy compatibility has been turned on by creating
a file called proxy.cfg in the same directory as the program.

proxy url

Return a list suitable for passing to LWP::UserAgent::proxy which con-
nects to the proxy which was spawned.

launch cntlm

Starts up the cntlm daemon if it is required and is not already running.

kill cntlm

Kills off the cntlm daemon.

Page 36 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.11. JONESCONFIG

4.11 JonesConfig

The following functions implement the behaviour documented mostly
in ../doc/jns.pm.

Constants

MAX HISTORY

How many different elements are read in the [historical] section.

substitute

substitute($variables,$str,[@time hashes]) substitutes the percent-
string placeholders from jns in doc with their values from $variables
into $str and returns the result.

save time

save time($filename) appends the program start time into $filename
in a format which can be easily editted, and which can be read by
load time of most recent.

load time of most recent

load time of most recent($filename) reads the last few lines from
$filename and returns a hash compatible with the third argument of
substitute.

load time closest to

load time closest to($filename,$goal time) reads through $filename
and finds the entry there which is closest in time to $goal time.

$goal time should be in the same format as save time() produces,
i.e. %D/%M/%X%Y %H:%T:%S

read scenarios section

read scenarios section($cfg[,$expand ranges]) reads the [scenario]
section from the Config::Inifiles object $cfg and returns two hash
arrays (the discrete elements and the range-based elements).

If the optional argument $expand ranges evaluates to something true,
then there will be no range-based elements. This will make the discrete
elements array very much larger.

Page 37 of 64

4.11. JONESCONFIG CHAPTER 4. PROGRAMMING REFERENCE

fudge command line

fudge command line($scenario) inserts back into the $scenario an
extra key-value pair command line=”...” which contains the command
line arguments needed to reproduce this scenario.

This calls MAACTP::reset() so should only be used when you are not
about to launch a fetch!

Page 38 of 64

CHAPTER 4. PROGRAMMING REFERENCE
4.12. MOTOR ACCIDENTS AUTHORITY CTP WEBSITE ACCESS

LIBRARY

4.12 Motor Accidents Authority CTP Website
Access Library

This package queries the NSW Motor Accdient’s Authority website to
see what prices various insurers are charging for compulsory third
party (CTP greenslip) insurance.

getopt options

getopt options() returns a list suitable for passing to Getopt::Long::GetOptions
so that you can extract all the appropriate information to call get pricing()
from the command-line.

errors()

errors() looks through the data in @questions and returns an empty
list if everything is fine (which is a bit odd, I know). If there is missing
data, or incorrect or ambiguous data, it returns a list of error messages
about the problems.

cmd line

cmd line() returns a list of command-line arguments which would
reproduce the current state.

fetch pricing page

fetch pricing page($pricing parameters) performs the HTTP POST
operating to the MAA web page using the parameters specified in $pricing parameters
which is a hash of CGI key/value pairs of the answers to the questions
on the form from http://prices.maa.nsw.gov.au/.

make pricing parameters

make pricing parameters() returns a hash reference of CGI pairs
formed form the data in @questions.

get premium

get pricing([$parameters]) returns a hash reference, based around
the data in @questions, or based around $parameters if that is set.

The $answers hash should have a value for each key in (sort values
%MAACTP::questions).

The returned hash will have insurer names as keys, and the values
being the prices they would charge to insure the vehicle.

Page 39 of 64

4.12. MOTOR ACCIDENTS AUTHORITY CTP WEBSITE ACCESS
LIBRARY CHAPTER 4. PROGRAMMING REFERENCE

parse maa webpage

parse maa webpage($raw source) parses the raw HTML that you get
back from the MAA website.

Page 40 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.13. NSWPOSTCODES

4.13 NSWPostcodes

This package was mostly created by grabbing the Auspost postcodes
data file and running it through

cut -d’,’ -f1,2 | sed -e ’s/,/ = /’ -e ’s/$/,/’>

It provides two associative arrays:

%codes, which is keyed from a postcode with values being a refer-
ence to a list of all the suburb names with that postcode.

%names which is key from a suburb name and returns all postcodes
used in that suburb.

Page 41 of 64

4.14. PREMIUMTABLE CHAPTER 4. PROGRAMMING REFERENCE

4.14 PremiumTable

A premium table object has a RangeDB for each insurer.

In the future I’ll subclass this somehow (or something like that) and
cope with tables which have no ranges in them.

insurers

insurers() returns a list of the names of NSW CTP insurers.

new

new PremiumTable($base scenario,$range fields) creates a new
PremiumTable object.

$base scenario should be a reference to a hash which has MAACTP
tags as values.

$range fields should be a reference to a hash which has key which
are the names of the axis ranges for the internal RangeDBs. The values
of $range fields should be hash references with keys ’low’, ’high’,
’subst’ and (optionally) ’year-minus-subst’.

next needed fetch

next needed fetch($table) returns an object which can be passed
to tags of fetch and store, which represents the next pricing scan
we will need to do.

tags of fetch

tags of fetch($table,$handle) returns a tag list suitable for feed-
ing to MAACTP::use tags().

store

store($table,$handle,$premiums hash) saves the premiums from
each insurer (stored in $premiums hash) into its internal RangeDB ob-
jects and associates them with $handle.

save

save($table,$path template) saves its RangeDB objects into the file
specified by $path template after the usual JonesConfig substitutions
have been made.

Page 42 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.15. RANGEDB

4.15 RangeDB

This package implements an odd kind of database.

Suppose you have a function of many variables F(a,b,c,...,z), and you
also know that for any variable V, dF/dV = 0 only once for fixed values
of the other variables, or otherwise dF/dV = 0 for all V.

That is, if you took a slice of F with nearly every variable fixed, and
graphed the differing values F took as you varied just one variable, the
picture would be one of:

a monotonic function

a parabola

a half sinusoid

a hill

a valley

Now suppose it was quite expensive to compute F(a,b,c,...z). What you
can do is take a few sample points and see if there are any equi-valued
planes or lines through the data. If there are, then you don’t need to
calculate every value along such a line – you can assume that they are
equal just based on the two points you’ve got so far. Later you can
come back and check to see if you might have stripped the top off a
peak, or filled the bottom of a valley.

This package implements the kind of database structure you need to
hold this kind of data.

new

new() creates a new database instance. It takes as an argument the
name of each axis.

e.g.

new RangeDB(’age’,’weight’,’height’);

splinter

splinter RangeDB ($parent,$split axis,$replaced lower,$replaced higher,$hypercube)
is a constructor

set axis range

set axis range($database,$axis name,$low value,$high value) is
one of the essential functions to call before the RangeDB is useable.

Page 43 of 64

4.15. RANGEDB CHAPTER 4. PROGRAMMING REFERENCE

complete

complete($database)) returns 1 if we have all relevant data we need
to fully reconstruct the F(...) function.

constant

constant($database) returns undef if we are not complete, or if dif-
ferent values have been inserted. If all data is complete and the same,
returns that value.

translate from cube coords

translate from cube coords($database,$cube coord) returns a hash
reference. The hash reference has keys with the same name as the
database axes, and values which will be at one end or the other of an
axis range.

missing

missing($database) returns a hash which represents something in
the domain of F which we haven’t yet stored.

set

set($database,$where,$value) records that F($where) has the value
$value. This might cause all sorts of things to happen in the back-
ground.

get

get($database,$where) returns the value associated with $where by
some previous set($database,$where,$value) operation.

mitosis

mitosis($database,$axis name,$axis mark) splits the child Hyper-
cube into two RangeDB objects.

dump

The usual

export ranges into

export info($database,$exportlist) appends on to the list refer-
ence $exportlist a list of hashes containing ranges and values.

Page 44 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.15. RANGEDB

export csv

export csv($database,$fh,[$separator] writes out $database into
CSV format, (or TSV format if $separator is a tab character).

The axis names will be used as column headers.

"axis_name1 (low)","axis_name2 (high)","axis_name2 (low)",VALUE
10,20,0,10,0.6
10,20,11,50,0.7
21,50,0,50,0.8

import csv

import csv($datafile) reads in a file in the same format as produced
by export csv and returns a RangeDB object.

Page 45 of 64

4.16. SCENARIOTAGS CHAPTER 4. PROGRAMMING REFERENCE

4.16 ScenarioTags

This package creates a unique sequential identifier number for each
scenario.

id of scenario

id of scenario($cache,$storage paths,$scenario) returns a unique
serial number (using the Counter and ScenarioID parameters stored by
$storage paths) for $scenario.

fudge scenario id

fudge scenario id($cache,$storage paths,$scenario) updates $scenario
so that there is also a tag saying ”ScenarioID”.

Page 46 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.17. STORAGEPATHS

4.17 StoragePaths

There are several different paths defined in the [storage] section of a
jones configuration file.

• Path

Where fetched results will get stored. This will be substituted with
any discrete scenario-based substitution variables (not ranges),
and any time-based substitution variables (but not historical ones).

In fact, for jones to work properly, all discrete scenario based vari-
ables and at least some time-based substitution variables must
appear in the path somewhere.

• Log

The log of each time jones has been run and performed a fetch
based on this configuration file. No variables are substituted here
at all.

• ScenarioId

Each scenario has a unique identifier number associated with
it. They can be different between configuration files, or common
across them.

All scenario-based substitution variables (including ranges) which
are not fixed must appear. Any others can appear.

i.e. If you fetch data for two zones, then %z must appear; if only
one, then %z is optional.

• Counter

A file to store the largest used scenario id number. No substitu-
tions are done on this.

new

new($class,$cfg) takes a Config::IniFiles object and reads the sec-
tion marked [storage].

timelog file

timelog file($sp) returns the Log file path, or undef if it wasn’t de-
fined.

data storage

data storage($sp,$scenario[,@historical times]) returns the [stor-
age] Path field with all substitutions already performed.

Page 47 of 64

4.17. STORAGEPATHS CHAPTER 4. PROGRAMMING REFERENCE

id storage

id storage($sp,$scenario) returns the [storage] ScenarioId field with
all substitutions already performed.

counter filename

counter filename($sp) returns the [storage] Counter field, or undef
if it wasn’t defined.

Other functions

The following functions aren’t method functions for StoragePath ob-
jects.

translate path

translate and prepare path($path template) returns a filename with
all time-based substitutions performed.

prepare path

prepare path($filename) makes any needed parent directories, so
that open(FILE,”>$filename”) has a chance of succeeding.

Page 48 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.18. RANGEDB

4.18 RangeDB

This package implements an odd kind of database.

Suppose you have a function of many variables F(a,b,c,...,z), and you
also know that for any variable V, dF/dV = 0 only once for fixed values
of the other variables, or otherwise dF/dV = 0 for all V.

That is, if you took a slice of F with nearly every variable fixed, and
graphed the differing values F took as you varied just one variable, the
picture would be one of:

a monotonic function

a parabola

a half sinusoid

a hill

a valley

Now suppose it was quite expensive to compute F(a,b,c,...z). What you
can do is take a few sample points and see if there are any equi-valued
planes or lines through the data. If there are, then you don’t need to
calculate every value along such a line – you can assume that they are
equal just based on the two points you’ve got so far. Later you can
come back and check to see if you might have stripped the top off a
peak, or filled the bottom of a valley.

This package implements the kind of database structure you need to
hold this kind of data.

new

new() creates a new database instance. It takes as an argument the
name of each axis.

e.g.

new RangeDB(’age’,’weight’,’height’);

splinter

splinter RangeDB ($parent,$split axis,$replaced lower,$replaced higher,$hypercube)
is a constructor

set axis range

set axis range($database,$axis name,$low value,$high value) is
one of the essential functions to call before the RangeDB is useable.

Page 49 of 64

4.18. RANGEDB CHAPTER 4. PROGRAMMING REFERENCE

complete

complete($database)) returns 1 if we have all relevant data we need
to fully reconstruct the F(...) function.

constant

constant($database) returns undef if we are not complete, or if dif-
ferent values have been inserted. If all data is complete and the same,
returns that value.

translate from cube coords

translate from cube coords($database,$cube coord) returns a hash
reference. The hash reference has keys with the same name as the
database axes, and values which will be at one end or the other of an
axis range.

missing

missing($database) returns a hash which represents something in
the domain of F which we haven’t yet stored.

set

set($database,$where,$value) records that F($where) has the value
$value. This might cause all sorts of things to happen in the back-
ground.

get

get($database,$where) returns the value associated with $where by
some previous set($database,$where,$value) operation.

mitosis

mitosis($database,$axis name,$axis mark) splits the child Hyper-
cube into two RangeDB objects.

dump

The usual

export ranges into

export info($database,$exportlist) appends on to the list refer-
ence $exportlist a list of hashes containing ranges and values.

Page 50 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.18. RANGEDB

export csv

export csv($database,$fh,[$separator] writes out $database into
CSV format, (or TSV format if $separator is a tab character).

The axis names will be used as column headers.

"axis_name1 (low)","axis_name2 (high)","axis_name2 (low)",VALUE
10,20,0,10,0.6
10,20,11,50,0.7
21,50,0,50,0.8

import csv

import csv($datafile) reads in a file in the same format as produced
by export csv and returns a RangeDB object.

Page 51 of 64

4.19. VALIDATOR CHAPTER 4. PROGRAMMING REFERENCE

4.19 Validator

This module is not documented yet.

Page 52 of 64

CHAPTER 4. PROGRAMMING REFERENCE 4.20. VEHICLETAGS

4.20 VehicleTags

There are two lines in a jones configuration file section which are a little
complicated to work with. They are:

Vehicle

VehicleAge / VehicleYear

Unlike most other jones configuration file options – each of which just
turns into a simple tag – these configuration options turn into multiple
tags.

And if we are doing range-based searches, then they turn into multiple
tags which we need to be able to reconstruct later.

age field

age field($cfg) returns the VehicleAge or VehicleYear tag, whichever
is defined. $cfg needs to be a Config::IniFiles object.

tags list

tags list($cfg[,$expand ranges]) returns a list reference which
should be inserted into combinatorix input representing the discrete
alternatives for vehicles.

If the optional argument $expand ranges is something true, then ranges
will get turned into discrete sets.

insert range fields

insert range fields($cfg,$range fields) takes the Vehicle and Ve-
hicleAge fields from $cfg and puts the minimum and maximum values
into the hash reference $range fields.

If VehicleAge is discrete (and not a range), then this function will do
nothing.

fudge vehicle variables

fudge vehicle variables($hashref) looks in the hash ref to figure
out if it can figure out some variables (%k, %m and %a) for a vehicle.

Page 53 of 64

4.21. YEARCOMPREHENSIONCHAPTER 4. PROGRAMMING REFERENCE

4.21 YearComprehension

Ages are specified in four different ways in jones configuration files.

• 1996-2006

• 0-10

• 1996,1997,1998,2001,2005,2009

• 0,1,2,3,5,10

Four digit numbers are obviously the year anno domino and is often
used for date of manufacture, or driver’s license year.

Any other numbers represent number of years in the past from now.

Internally to jones we use the number of years in the past. When query-
ing the MAACTP website, we turn that back into year of manufacture.

This is simpler because it means we don’t need to change the configu-
ration file every year.

years ago

years ago($config str) turns a $config str which uses CCYY for-
mat into ”years ago” format.

I wish I had had this before I wrote age min max

age min max

age min max($config val) parses a jones configuration line item and
returns the minimum and maximum years old.

is range

is range($config val) parses a jones configuration file line and says
whether or not the age specified is a range.

Page 54 of 64

Chapter 5

Sample Configs

5.1 full.jns

55

5.1. FULL.JNS CHAPTER 5. SAMPLE CONFIGS

#
C
o
n
f
i
g
u
r
a
t
i
o
n
f
o
r
a
l
a
r
g
e
,
f
u
l
l
r
u
n
t
o
s
t
o
r
e
l
o
t
s
o
f
p
r
e
m
i
u
m
s

[
s
t
o
r
a
g
e
]

P
a
t
h
=
.
j
o
n
e
s
/
j
o
n
e
s
-
f
u
l
l
-
%
D
-
%
B
-
%
X
%
Y
/
%
H
:
%
T
/
%
k
-
%
z
-
%
h
-
%
o
-
%
u
-
%
e
-
%
c
-
%
r
-
%
I
.
d
b

L
o
g
=
.
j
o
n
e
s
/
j
o
n
e
s
-
f
u
l
l
.
l
o
g

[
s
c
e
n
a
r
i
o
s
]

V
e
h
i
c
l
e
A
g
e
=
0
-
2
0

V
e
h
i
c
l
e
=
T
o
y
o
t
a
P
r
i
u
s
,
F
o
r
d
F
a
l
c
o
n
X
R
8
P
u
r
s
u
i
t
,
2
5
0
c
c
K
a
w
a
s
a
k
i
N
i
n
j
a

Z
o
n
e
=
M
e
t
r
o
,
C
o
u
n
t
r
y
,
N
e
w
c
a
s
t
l
e
,
W
o
l
l
o
n
g
o
n
g
,
O
u
t
e
r

D
r
i
v
e
r
A
g
e
=
1
8
-
8
0

H
i
s
t
o
r
y
=
G
o
o
d
D
r
i
v
e
r
,
B
a
d
D
r
i
v
e
r

O
w
n
e
r
s
h
i
p
=
P
r
i
v
a
t
e
l
y
O
w
n
e
d
,
C
o
m
p
a
n
y
O
w
n
e
d

U
s
a
g
e
=
P
r
i
v
a
t
e
U
s
a
g
e
,
B
u
s
i
n
e
s
s
U
s
a
g
e

E
x
i
s
t
i
n
g
=
C
T
P
w
i
t
h
A
l
l
i
a
n
z
,
N
o
C
T
P

C
o
m
p
r
e
h
e
n
s
i
v
e
=
N
o
c
o
m
p
r
e
h
e
n
s
i
v
e

G
e
n
d
e
r
=
M
a
l
e

C
o
m
m
e
n
c
e
m
e
n
t
=
0

R
o
a
d
s
i
d
e
=
N
R
M
A
M
e
m
b
e
r
,
N
o
r
o
a
d
s
i
d
e
a
s
s
i
s
t
a
n
c
e

#
N
o
e
x
p
o
r
t
o
r
c
h
a
n
g
e
s
s
e
c
t
i
o
n
.
I
’
m
e
x
p
e
c
t
i
n
g
t
h
a
t
t
h
i
s
w
o
u
l
d

#
b
e
u
s
e
d
i
n
c
o
n
j
u
n
c
t
i
o
n
w
i
t
h
a
s
e
c
o
n
d
c
o
n
f
i
g
u
r
a
t
i
o
n
f
i
l
e
w
h
i
c
h

#
h
a
v
e

#
[
f
e
t
c
h
]

#
e
n
a
b
l
e
d
=
n
o

#
i
n
i
t
s
o
m
e
w
h
e
r
e
.

#
W
i
t
h
o
u
t
a
n
e
x
p
o
r
t
s
e
c
t
i
o
n
,
t
h
e
h
i
s
t
o
r
i
c
a
l
s
e
c
t
i
o
n
i
s
i
r
r
e
l
e
v
a
n
t
.

[
h
i
s
t
o
r
i
c
a
l
]

0
=
p
r
e
v
i
o
u
s

Page 56 of 64

CHAPTER 5. SAMPLE CONFIGS 5.1. FULL.JNS
1
=
1
m
o
n
t
h
a
g
o

2
=
2
m
o
n
t
h
s
a
g
o

3
=
3
m
o
n
t
h
s
a
g
o

4
=
6
m
o
n
t
h
s
a
g
o

5
=
1
y
e
a
r
a
g
o

Page 57 of 64

5.2. ALERTS.JNS CHAPTER 5. SAMPLE CONFIGS

5.2 alerts.jns

Page 58 of 64

CHAPTER 5. SAMPLE CONFIGS 5.2. ALERTS.JNS
#
C
o
n
f
i
g
u
r
a
t
i
o
n
f
i
l
e
f
o
r
a
q
u
i
c
k
r
u
n
t
o
i
d
e
n
t
i
f
y
p
r
i
c
i
n
g
m
o
v
e
m
e
n
t
s
.

[
s
t
o
r
a
g
e
]

P
a
t
h
=
.
j
o
n
e
s
/
a
l
e
r
t
s
/
%
H
:
%
T
/
%
z
/
%
h
/
%
c
/
%
I
.
p
r
i
c
e

L
o
g
=
.
j
o
n
e
s
/
a
l
e
r
t
s
.
l
o
g

[
f
e
t
c
h
]

t
h
r
e
a
d
s
=
1

[
s
c
e
n
a
r
i
o
s
]

V
e
h
i
c
l
e
A
g
e
=
0

V
e
h
i
c
l
e
=
T
o
y
o
t
a
P
r
i
u
s
(
c
l
a
s
s
1
)

Z
o
n
e
=
M
e
t
r
o
,
C
o
u
n
t
r
y

D
r
i
v
e
r
A
g
e
=
5
0

H
i
s
t
o
r
y
=
G
o
o
d
D
r
i
v
e
r
a
n
d
N
R
M
A
M
e
m
b
e
r
,
B
a
d
D
r
i
v
e
r
w
i
t
h
o
u
t
R
o
a
d
s
i
d
e
A
s
s
i
s
t
a
n
c
e

O
w
n
e
r
s
h
i
p
=
P
r
i
v
a
t
e
l
y
O
w
n
e
d

U
s
a
g
e
=
P
r
i
v
a
t
e
U
s
a
g
e

E
x
i
s
t
i
n
g
=
L
a
p
s
e
d
C
T
P

C
o
m
p
r
e
h
e
n
s
i
v
e
=
C
o
m
p
r
e
h
e
n
s
i
v
e
w
i
t
h
A
l
l
i
a
n
z
,
N
o
c
o
m
p
r
e
h
e
n
s
i
v
e

G
e
n
d
e
r
=
F
e
m
a
l
e

C
o
m
m
e
n
c
e
m
e
n
t
=
6
0

[
c
h
a
n
g
e
s
]

F
o
r
m
a
t
=
%
I
c
h
a
n
g
e
d
f
r
o
m
%
0
P
t
o
%
P
f
o
r
a
%
v
i
n
t
h
e
%
z
z
o
n
e
f
o
r
a
%
h
w
i
t
h
%
c
(
c
o
m
m
e
n
c
i
n
g
%
R
/
%
U
/
%
V
%
W
)
.

H
e
a
d
e
r
=
P
R
E
M
I
U
M
P
R
I
C
I
N
G
M
O
V
E
M
E
N
T
S
A
L
E
R
T
b
e
t
w
e
e
n
%
0
D
-
%
0
B
-
%
0
X
%
0
Y
%
0
H
:
%
0
T
a
n
d
%
D
-
%
B
-
%
X
%
Y
%
H
:
%
T

O
u
t
f
i
l
e
=
.
j
o
n
e
s
/
a
l
e
r
t
s
/
%
D
-
%
B
-
%
X
%
Y
/
%
H
:
%
T
.
t
x
t

C
o
m
m
a
n
d
=
c
p
.
j
o
n
e
s
/
a
l
e
r
t
s
/
%
D
-
%
B
-
%
X
%
Y
/
%
H
:
%
T
.
t
x
t
/
v
a
r
/
w
w
w
/
v
h
o
s
t
s
/
w
w
w
.
i
f
o
s
t
.
o
r
g
.
a
u
/
j
o
n
e
s
/
d
a
t
a
/
l
a
t
e
s
t
-
c
h
a
n
g
e
.
t
x
t

S
M
S
u
s
e
r
n
a
m
e
=
X
X
X
X
Y
X
Y
X

S
M
S
p
a
s
s
w
o
r
d
=
z
y
z
y
Z
y
Z
Y
X

S
M
S
p
h
o
n
e
s
=
0
4
0
8
1
2
3
4
5
6

S
M
S
h
e
a
d
=
P
r
e
m
i
u
m
c
h
a
n
g
e
s
.
%
R
/
%
U
/
%
V
%
W
.
I
n
s
u
r
e
r
s
:

Page 59 of 64

5.2. ALERTS.JNS CHAPTER 5. SAMPLE CONFIGS

S
M
S
t
e
x
t
s
=
%
I

S
M
T
P
S
e
r
v
e
r
=
m
a
i
l
.
i
f
o
s
t
.
o
r
g
.
a
u

F
r
o
m
A
d
d
r
e
s
s
=
j
o
n
e
s
@
i
f
o
s
t
.
o
r
g
.
a
u

T
o
A
d
d
r
e
s
s
=
g
r
e
g
b
@
i
f
o
s
t
.
o
r
g
.
a
u

E
m
a
i
l
S
u
b
j
e
c
t
=
P
r
e
m
i
u
m
c
h
a
n
g
e
s
b
e
t
w
e
e
n
%
0
D
-
%
0
B
-
%
0
X
%
0
Y
%
0
H
:
%
0
T
a
n
d
%
D
-
%
B
-
%
X
%
Y
%
H
:
%
T

E
m
a
i
l
L
i
n
e
s
=
%
I
c
h
a
n
g
e
d
f
r
o
m
%
0
P
t
o
%
P
f
o
r
a
%
v
i
n
t
h
e
%
z
z
o
n
e
f
o
r
a
%
h
w
i
t
h
%
c
(
c
o
m
m
e
n
c
i
n
g
%
R
/
%
U
/
%
V
%
W
)
.

Page 60 of 64

Appendix A

Procedure for adding
another field

The tags “Good Driver” and “Bad Driver” supply answers to many ques-
tions. If you want to have a more fine-grained approach, it involves
modifying the program source.

1. In perllib/JonesConfig.pm, in read scenarios section, add
the extra field to @discrete_fields.

2. Still in perllib/JonesConfig.pm find %Substitutions and find
a percentage-string which hasn’t already been used. Add that
extra letter as a key, with the value being the string used in
@discrete_fields

3. In perllib/MAACTP.pm find the repeated calls to make tag. Re-
move any question-answer pairs which should no longer be in a
big tag (e.g. “Good Driver” or “Bad Driver”), and create a new
make tag call with the new field (and whatever question-answer
pairs it supplies).

4. Edit doc/jns.pm in the [scenarios] section. Add another =item
with the name used in @discrete_fields stating that the possi-
ble values are the tag names from perllib/MAACTP.

5. Still in doc/jns.pm, in the Scenario-based substitution section,
add another =item with the percentage-string (from JonesConfig::Substitutions)
and the name from @discrete_fields.

6. Now edit all the files under conf/ which will be affected by this
change (which will probably be all of them), and add a line to the
[scenarios] section of each of them with the new field. If a config
file now uses several alternative values for this new field, then you
are likely to need to alter the Path parameter in [storage].

61

Appendix B

Working with Microsoft’s
ISA proxy and firewall

Some organisations have chosen to use Microsoft’s proprietary proxy
and firewall application, called “Microsoft ISA” – also known as Mi-
crosoft’s Internet Security and Accelerator Server.

This software requires users to connect with Microsoft’s own propri-
etary protocol to the proxy server. Usually, authentication is done by
username and password against an ActiveDirectory database, which
often means the password will need to change every three months or
so.

For this reason, when jones is run inside an organisation using Mi-
crosoft ISA there is an extra step to perform which is done by default
as part of the installer – which is to create C:\jones\proxy.cfg and
edit the username, password, domain and proxy fields.

When you change your password, you will need to change your pass-
word in this file as well.

This functionality is only available on MS-Windows. For users running
jones on Linux or Unix behind an ISA proxy server, install and run
cntlm from http://cntlm.sourceforge.net/.

If you do not wish to store plain text passwords in the configuration
file – and there is no alternative proxy server available – there is some
documentation on storing hashes in the cntlm documentation at the
same website.

62

Index

about, 27
age field, 25, 53
age list, 25
age min max, 25, 54
alert changes, 30

Car Types, 20
car models from vendor code, 20
cmd line, 39
Combinatorix, 22
command, 28
commencement earliest and latest,

24
commencement field, 24
commencement list, 24
complete, 33, 44, 50
constant, 33, 44, 50
constant sanity check, 34
Constants, 37
corners, 32
counter filename, 48
CTPPostcodes.pm, 23

data storage, 47
DateTags, 24
disable, 27
DriverTags, 25
dump, 35, 44, 50

enabled, 27
end spawn, 29
errors(), 39
export csv, 45, 51
export ranges into, 44, 50
export scenarios, 31
ExportsConfig, 26

fetch, 29
fetch pricing page, 39
fetch ranges, 30
FetchScenario, 29

first corner, 32
first inconstant axis, 34
fudge command line, 38
fudge commencement, 24
fudge driver age, 25
fudge scenario id, 46
fudge vehicle variables, 53

get, 27, 33, 44, 50
get axis N, 32
get premium, 39
get vendor code from vendor name,

20
getopt options, 39
guess, 20

Hypercorners, 32
Hypercube, 33

id of scenario, 46
id storage, 48
import csv, 45, 51
includes historical, 27
inconstant along axis, 34
insert range fields, 24, 25, 53
insurers, 42
is range, 54
IsaCompat, 36

jns, 10
[changes], 11
[export], 13
[fetch], 11
[historical], 14
[scenarios], 10
[storage], 14
AUTHOR, 18
Historical Variants, 18
OVERVIEW, 10
Premium value variables, 17
Scenario-based substitution vari-

ables, 15

63

INDEX INDEX

SEE ALSO, 18
SUBSTITUTION VARIABLES, 15
Time-based and insurer-based

substitution variables, 16
jones pl

AUTHOR, 9
OPTIONS, 9
SYNOPSIS, 9

jones.pl, 9
JonesConfig, 37

keeps constancy, 33
kill cntlm, 36

launch cntlm, 36
load time closest to, 37
load time of most recent, 37

make pricing parameters, 39
matching, 32
missing, 34, 44, 50
mitosis, 34, 44, 50
Motor Accidents Authority CTP Web-

site Access Library, 39

new, 26, 33, 42, 43, 47, 49
next corner, 32
next needed fetch, 42
NSWPostcodes, 41

ordering, 28
Other functions, 48
outfile template, 28

pair variations, 22
parse maa webpage, 40
PremiumTable, 42
prepare path, 48
proxy url, 36

RangeDB, 43, 49
read all insurer history, 30
read premium from file, 30
read scenarios section, 37
reap afterwards, 29

sanity check class model make, 20
save, 42
save time, 37
ScenarioTags, 46
sequences, 27

set, 33, 44, 50
set axis N, 32
set axis range, 43, 49
set list, 33
simple fetch, 30
spawn, 29
splinter, 43, 49
StoragePaths, 47
store, 42
substitute, 37

tags list, 24, 25, 53
tags of fetch, 42
timelog file, 47
translate from cube coords, 44, 50
translate path, 48

using isa, 36
usual value, 33

Validator, 52
variations, 22
variations of lists, 22
vehicle classes, 21
vehicle makes in vehicle class, 20
VehicleTags, 53
vendor name of vendor code, 20

YearComprehension, 54
years ago, 54

Page 64 of 64

	Overview
	Installation
	Requirements
	MS-Windows
	Perl
	jones application
	Historical data and sequence numbers
	Changing the location

	Commands and Config
	jones.pl
	jns

	Programming Reference
	Car Types
	Combinatorix
	CTPPostcodes.pm
	DateTags
	DriverTags
	ExportsConfig
	FetchScenario
	Hypercorners
	Hypercube
	IsaCompat
	JonesConfig
	Motor Accidents Authority CTP Website Access Library
	NSWPostcodes
	PremiumTable
	RangeDB
	ScenarioTags
	StoragePaths
	RangeDB
	Validator
	VehicleTags
	YearComprehension

	Sample Configs
	full.jns
	alerts.jns

	Procedure for adding another field
	Working with Microsoft's ISA proxy and firewall

